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ABSTRACT 

The authors  consider curves on surfaces which have more intersections than the 
least possible in their homotopy class. 

THEOREM 1. Let [ be a general position arc or loop on an orientable surface F 
which is homotopic to an embedding but not embedded. Then there is an 
embedded 1-gon or 2-gon on F bounded by part of the image of f. 

THEOREM 2. Let f be a general position arc or loop on an orientable surface F 
which has excess self-intersection. Then there is a singular 1-gon or 2-gon on F 
bounded by part of the image of f. 
Examples  are given showing that analogous results for the case of two curves on 
a surface do not hold except in the well-known special case when each curve is 
simple. 

Let C1 and (72 be simple closed curves on the annulus A. It is easy to show that 

if C1 and C2 intersect and do so transversely, then there must be a 2-disc D in A 

whose boundary is At U A2 where Ai is a sub-arc of Ci. We call such a disc a 2-gon 

between C~ and C2. If two simple closed curves C1 and (72 on a surface F 

intersect transversely, we will say that C~ and C2 have excess intersection if one of 

them can be homotoped so as to reduce the number of intersection points with 

the other. The natural generalisation of the above result about two curves on the 

annulus is that if C~ and (72 are simple closed curves on a surface F and if they 

have excess intersection then there is a 2-gon between C~ and C2. This result is 

fairly well known, but, for completeness, we give a proof at the start of §3. 

In this paper, we consider the question of finding analogous results about the 

intersection of two possibly singular loops on a surface and about the self- 

intersection of a single loop. Various results in this area have been assumed to be 

obvious by some authors. However, we give examples which demonstrate that 
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many of these assumptions are incorrect. Further, the results which are true are 

surprisingly difficult to prove. 

One of our original motivations for this work was to obtain a new proof of the 

results of Freedman, Hass and Scott in [1] and of Hass and Rubinstein in [2] on 

the intersections and self-intersections of loops on a Riemannian surface, each of 

which is shortest in its homotopy class. We succeed in obtaining new proofs of 

the results in [1] and [2] on the self-intersections of a single loop, but it seems 

that the results on intersections of two loops cannot be proved in this way. We 

also give, at the end of §2, the first specific examples of filling curves on surfaces. 

A singular loop on a closed surface F is a filling curve if it cannot be homotoped 

into a proper  incompressible subsurface of F. 

We will now describe our main results and counter examples. We will consider 

the intersections of proper arcs on a surface as well as of loops. Throughout  this 

paper, we will assume that all our arcs and loops are immersed and in general 

position. Let fl and ]:2 be two proper  arcs on a surface F, i.e., f~ : I ~  F and 

F?~(OF)= M. We say that f, and f: have excess intersection if they can be 

homotoped tel boundary to intersect in less points. We make similar definitions 

of excess self-intersection of a single arc and of excess intersection and 

self-intersection of loops. 

If two proper  arcs f, and f2 have excess intersection, it is easy to show that 

there are sub-arcs Ai of f~ such that the endpoints of A ~ coincide with those of/~2, 

and A~ is homotopic to A2 rel 0A,. See Lemma 3.2. This can be thought of as 

asserting the existence of a singular 2-gon between f, and f:. However,  it is a 

surprising fact that no such result holds in the case of two singular loops on a 

surface. Figure 0.1 shows two examples of loops on the annulus with excess 

intersection but no (singular) 2-gon between them. 

When we consider the self-intersections of a single arc or loop on a surface F, 

we again find some positive results and some surprising examples. First we note 

(a) 

J 

Fig. 0.1. 

(b) 
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that the example of a figure-eight loop in the plane shows that a loop can have 

excess self-intersection without there being a 2-gon. Clearly, in this example, we 

have 1-gons instead. If f is a loop on a surface F, i.e. f : S z ~ F, we say that a 

2-disc D in F is an embedded 1-gon for f if there is a sub-arc a of S ~ such that 

f ( a )  = aD and f ! int a is injective. We say that a 2-disc D in F is an embedded 
2-gon forf if there are disjoint sub-arcs a and/3 of S ~ such that f embeds a and 

/3 so that 

f (a)U f(/3)= ,~D and f (a)A f(/3)= f(cga)= f(cg/3). 

We make similar definitions if f is an arc on F. Our first result is the following. 

THEOREM 2.7. Let f be a general position loop on an orientable surface F which 
is homotopic to an embedding but is not an embedding. Then there is an embedded 
1-gon or 2-gon for f. 

REMARKS. We cannot expect that we can always find an innermost 1-gon or 

2-gon D, i.e., that the image of f does not meet the interior of D. Figure 0.2 

shows a singular loop in the plane for which there are no innermost 1-gons or 

2-gons. 

Fig. 0.2. 

We are unable to decide whether the above theorem remains true if the 

orientability hypothesis is removed. However, we show that it does remain true 

in the case when F is not closed, and we prove a similar result for arcs on a 

surface F. See the end of §2 for a discussion of the problems here. Finally, the 

hypothesis that f be homotopic to an embedding is essential as the example in 

Figure 0.3 shows. This example suggests that one should be able to find a 

singular 1-gon or 2-gon for f, because a singular 2-gon is apparent in Fig. 0.3(b). 

If f is a general position loop on a surface F, we say that f has a singular 1-gon if 
there is a sub-arc a of S ~ such that f identifies the endpoints of a and f la 
defines a null-homotopic loop on F. We say that f has a singular 2-gon if there 

are disjoint sub-arcs a and/3 of S 1 such that jr identifies the endpoints of a and 

/3 and jr I (a U/3) defines a null-homotopic loop on F. 
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(a) (b) 

Fig. 0.3. 

THEOREM 4.2. Let f be a general position loop on an orientable surface F. If  f 

has excess self-intersection, then f has a singular 1-gon or 2-gon. 

REMARKS. A similar result holds for arcs. We are unable to decide whether 

any loop f on an orientable surface which possesses a singular 1-gon must 

possess an embedded 1-gon or 2-gon. The example in Fig. 0.4 shows that f need 

not possess an embedded 1-gon. 

Fig. 0.4. 

The hypothesis that F be orientable cannot be omitted from Theorem 4.2 as 

the example in Fig. 0.5 shows. The crucial point here is our insistence, in the 

definition of singular 2-gons, that the sub-arcs ot and/3 of S' which give rise to a 

singular 2-gonmust be disjoint. If one removes this condition, we finally arrive at 

a result which holds for any loop with excess self-intersection. We say that a loop 

(a) 

4 I 

2 3 

I 4 

Fig. 0.5. 

(b) 
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f on a surface F has a weak 2-gon if there are sub-arcs a and/3 of S 1 such that f 

identifies the endpoints of a with those of/3 and the loop formed by f Is  and 

f I/3 is null-homotopic on F. 

THZOREM 3.5. Let f be a general position loop on a surface F. If  f has excess 
self-intersection, then f has a singular 1-gon or a weak 2-gon. 

REMARKS. The converse of this result is false as consideration of a degree- 

two loop on the annulus shows. A similar result holds for arcs. 

The organisation of this paper is as follows. In §1, we exhaustively analyse 

intersections of arcs and loops on the annulus and Moebius band. In §2, we 

consider arcs and loops which are homotopic to simple curves. In §3, we consider 

arbitrary arcs and loops on arbitrary surfaces, and then briefly explain how our 

results can be applied to give new proofs of results of [1] and [2]. Finally, in §4, 

we consider arcs and loops on orientable surfaces which may not be homotopic 

to simple curves. 

The work in this paper was done while the second author was visiting the 

University of Michigan and was also partially supported by NSF grant 81-02469. 

We would also like to thank Jeff Parker for a helpful conversation. 

§1. Curves on the annulus and Moebius band 

Throughout this paper any map f of a 1-manifold ~ into a surface F will be 

assumed to be proper and in general position. Thus f-~(OF)= 0"~ and the only 

singularities of [ are double points. The number of double points of f is counted 

in F, i.e., it equals the cardinality of {x E F : f - l (x)  is two points}. We say that a 

loop f on a surface F represents a in ~rl(F) if f is freely homotopic to a based 

loop representing a. Thus f also represents any conjugate of a. 

In this section, we analyse exhaustively what can be said about the existence of 

1-gons and 2-gons when one has arcs or loops with excess intersection on the 

annulus S 1 x I or the Moebius band. The only result in this area which seems 

trivial is the following for curves on simply connected surfaces. 

LI~MMA 1.1. If  f is an arc or loop on a simply connected surface F such that f is 

not simple, then there is an embedded 1-gon for f. 

PROOF. Among all pairs (x~, y~) of points in the domain ~ of f for which 

f(x~) = f(y~), choose an,innermost pair (Xo, yo). This means that there is a sub-arc 

a of ~ with endpoints Xo and yo such that a contains no other pair (x~, y~). Clearly 
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a yields a simple loop on F and hence an embedded 1-gon for f, as any simple 

loop on F must bound a 2-disc. 

Now we consider arcs and loops on the annulus S 1 x I, which we denote by A. 

We let 0oA and 01A denote the two boundary components of A. 

LEMMA 1.2. Let f be an arc on the annulus A joining OoA to O~A. I f  f is not 

simple, then there is an embedded 1-gon or 2-gon for f. 

REMARK. Any such arc is homotopic, rel boundary, to a simple arc, so the 

hypothesis that f is not simple is equivalent to assuming that f has excess 

self-intersection. 

PROOF. We will suppose that f has no embedded 1-gons or 2-gons and will 

deduce that f is simple. 

Let h be a simple arc in A joining 0oA to 01A which meets the image of f 

transversely in the least possible number of points. We cut A along A to obtain a 

2-disc R with arcs h0 and h~ in OR corresponding to h. The image of f is cut by h 

into arcs/zi in R. As f has no embedded 1-gons, it follows from Lemma 1.1 that 

each/z~ is simple. As f has no embedded 2-gons, it follows that each pair o f /~ ' s  

meets in at most one point. Let ~o be the sub-arc of f which meets &A. If we 

suppose that h meets f, then/zo must meet ho or h~. We suppose that/Zo meets ho 

at X. See Fig. 1.3. 

~o 

A 
1 

,, 
! 

~o A 

Fig. 1.3. 

I 

The point X cuts ho into two sub-arcs and we let a denote the sub-arc with 

one endpoint on 3oA. If some arc/zi crosses/xo, it must meet ho in ot because/xo 

and/zi can meet only once. It follows that the arc h '  shown dotted in Fig. 1.3 

meets f in less points than h does, contradicting our definition of h. It follows 

that h does not meet f at all and hence that f equals the simple arc /Zo, 

completing the proof of the lemma. 
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LEMMA 1.4. Let f : S~ ~ A be a loop on the annulus representing a generator of 

7r,(A ). I f  f is not simple, then there is an embedded 1-gon or 2-gon for f. 

PROOF. As in the previous lemma, we will suppose that f has no embedded 

1-gon or 2-gon and will show that f is simple. We again let A be a simple arc 

joining 0oA to  0~A which meets the image of f transversely in the least possible 

number of points. We let R denote the 2-disc obtained by cutting A along A and 

let A0 and A~ be the arcs in OR corresponding to h. Note that A must meet f as 
otherwise f would be null-homotopic. Hence h cuts the image of f into arcs ~i 
with boundary in ho tO )t ~. As in the previous lemma, each/~i is simple and each 

pair of ~i's meets in at most one point. If each arc/~i joins ho to )t~, then the 

number of/z~ 's equals the degree of [. In this case, there must be only one/~ and 

so it follows at once that f is simple. Otherwise, one of the /~'s has both 

endpoints in the same hi. We suppose that/Zo has both endpoints in ho as in Fig. 

1.5, and let a denote the sub-arc of )to with the same endpoints as/~o. If some arc 

~ crosses/z0, it must meet )to in a, because/Zo and/z~ can meet only once. It 
follows that the arc )t' shown dotted in Fig. 1.5 meets f in less points than A does, 

contradicting our definition of )t. This contradiction completes the proof of the 

lemma. 

5 
! 

% )-' 
;k O 

Fig. 1.5. 

At this point, we note that the above arguments can equally well be applied to 

a loop on the Moebius band M which represents a generator of 7h(M). One 

chooses h to be a non-separating simple arc in M which meets the image of f 

transversely in the least possible number of points. The result obtained is the 

following. 

LEMMA 1.6. Let f : S ~ ~ M be a loop on the Moebius band M representing a 

generator of zrl(M). I f  f is not simple, then there is an embedded 1-gon or 2-gon for 

f. 

Now we return to our consideration of curves on the annulus. 



Vol. 51, 1985 CURVES ON SURFACES 97 

LEMMA 1.7. Let A and I¢ be two simple arcs on the annulus A each joining OoA 

to a~A. If  A and I-~ are in general position and there are no embedded 2-gons 

between A and tz, then the configuration of A and gt in A is unique up to an ambient 

isotopy of A which fixes OA. 

REMARK. In particular A and /z intersect in the least possible number of 

points obtainable by homotoping A or /,t rel boundary. 

PROOF. We cut A along A to obtain a 2-disc R with arcs A~ and A2 in OR, 

corresponding to A. As/z is simple, the intersection of p, with R is a collection of 

disjoint simple arcs/z, As there are no embedded 2-gons between A and/x, no/~i 

can have both endpoints on A, or on Az. If we choose a path/~ '  in R joining the 

endpoints of/x, i t is clear that the number of arcs/xi equals one more than the 

degree of the loop/x U/x'  on A. The required uniqueness result follows. See Fig. 

1.8 for the configuration in R when /z t3/z' has degree 4. 

~ x 

Fig. 1.8. 

LEMMA 1.9. Let f : (L M)--~ (A, OoA ) be a general position arc on A. l f  f has 

no embedded 1-gons or 2-gons, the configuration of the image o f f  is unique up to 

an ambient isotopy of A which fixes OA. 

REMARK. In particular, f has least possible self-intersection. 

PROOF. Let a be a simple arc in A with one endpoint on 0~A, the other 

endpoint on f ( I )  and with its interior disjoint from f(I) .  Using a, we obtain two 

new arcs A and/z  from f as shown in Fig. 1.10. As f has no embedded 1-gons or 

2-gons, neither do A and/z.  Also there are no embedded 2-gons between A and 

/z. Now Lemma 1.2 implies that A and/z  are both simple, and then Lemma 1.7 

implies that the configuration of A and /z in A is unique. There are only two 

possibilities for the configuration of f, which are shown in Fig. 1.11 in the case 

when h and /~ are as in Fig. 1.8. As the first possibility implies that f has an 

embedded 1-gon, the uniqueness result follows. 
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Fig. 1,10. 

J j 

J 

f 

._______--..-- 

f 

Fig. 1.11. 

LEMMA 1.12. Let f : S1--~A be a general position loop on the annulus of 
degree d. I f  f has no embedded 1-gons or 2-gons, then the configuration o f f  in A is 
unique up to ambient isotopy of A, and f has (d - 1) double points. 

PROOF. We argue as in Lemma 1.9. Join f (S ~) to cg0A by a simple arc a 

whose interior does not meet f(S~). This yields an arc l :(I, 0I)--~ (A, ~9oA). As f 
has no embedded 1-gons or 2-gons, neither has I. Hence, by Lemma 1.9, the 
configuration of l is unique up to an ambient isotopy of A fixing c~A. As in 
Lemma 1.9, there are two possible configurations for f, one of which contains an 

embedded 1-gon. The uniqueness result follows, and the configuration in the 

case d equals 4 is shown in Fig. 1.13. Clearly, f will have (d - 1) double points. 

Fig. 1.13. 
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LEMMA 1.14. Let fo and f~ be arcs in (A, & A )  and (A, & A )  respectively 
which are in general position. I f  fo and fl have no embedded 1-gons or 2-gons and 
if there are no embedded 2-gons between fo and f~, then fo and f~ must be disjoint. 

PROO~ First suppose that fo is simple. Then )Co separates A and one of the 

components obtained by cutting A along fo is a 2-disc R. If fj meets f(,, some 

sub-arc )t of f~ must lie in R. By Lemma 1.1, a must be simple and thus R must 

contain an embedded 2-gon D bounded by )t and some sub-arc of fo. This 

contradiction shows that fo and f~ must be disjoint, when )co is simple. 

Now suppose that f0 is not simple. Lemma 1.9 tells us that the configuration of 

fo in A is unique up to ambient isotopy. The image of fo cuts A into various 

regions. We let o- denote the simple loop in fo(I) which lies in the boundary of 

the region containing &A,  and let r denote the simple sub-arc of f,, shown in Fig. 

1.15. (If fo has only one double point, we have two choices for r.) Let R denote 

the 2-disc obtained from A by cutting along o- and removing a regular 

neighbourhood of r. Thus OR contains an arc corresponding to ~r and two arcs ro 

and r, corresponding to r, as shown in Fig. 1.15. 

~1 A 

aoA 

Fig. 1.15, 

If fo and f, are not disjoint, then f~(I) must meet R. As fl has no embedded 

1-gons, f~ will meet R in a collection of simple arcs/~. As there are no embedded 

2-gons between fl and f2 none of these arcs can have both endpoints in tr or both 

in ro or both in rl. The number of endpoints of/z~'s on ro must equal the number 

on r~, as both are equal to the number of times f~(I) meets r. Hence the number 

of/xi 's joining cr to ro must equal the number of/x~'s joining tr and r~. It follows 

that some ~i has its endpoints on ~r and to. Clearly, this yields an embedded 

2-gon between/Co and f~. This contradiction shows that fo and f~ must be disjoint 

as required. 
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Note that the above proof did not use the hypothesis that f, has no embedded 

2-gons. 

Finally, we consider the self-intersection of a single loop on the Moebius band 

M. As discussed in the introduction, a loop on M with excess self-intersection 

need not have an embedded 1-gon or 2-gon or even a singular 1-gon or 2-gon, 

but we will show that it must have a singular 1-gon or a weak 2-gon. Before 

proving that, it is interesting to see how easy it is to prove such a result for the 

annulus. 

LEMMA 1.16. Let f be a general position loop on the annulus A. If  f is not 
simple, then f has an embedded 1-gon or a weak 2-gon. 

REMARK, Note that f need not have excess self-intersection, so this result 

does not follow from Lemma 1.J2. 

PROOF. We will suppose that f has no embedded 1-gon or 2-gon and will 

show that f must possess a weak 2-gon. Let y be a simple arc in A joining the 

two boundary components and chosen to intersect f in the least possible number 

of points. Then y cuts A into a 2-disc R whose boundary contains two arcs ~/~ 

and y2 corresponding to y. If f f) y is empty, Lemma 1.1 shows that f has an 

embedded 1-gon which is a contradiction. Otherwise, f fq R consists of arcs Ai 
each of which must be simple. Further, the usual argument (see Lemma 1.4) 

shows that each Ai must join y) to T2. As f is not simple, there must be at least 

two L ' s  and a point x at which two of the L ' s  intersect. We can now obtain a 

weak 2-gon for f, i.e., sub-arcs A and tx of S' such that f(A) is homotopic to f(ix) 

rei boundary. We find A and/z by starting at x and following the two sub-arcs of 

f from x to 72 and continuing to follow these arcs around A until they cross 

again. Of course, these arcs will cross at some point because eventually, they will 

each traverse all of the circle and both arrive back at x. However, if they failed to 

cross before traversing the whole circle, we would have a problem as then the 

"arcs" described will each be all of S ~. But, after traversing the whole circle our 

two arcs must have interchanged sides, as they cross at x and the orientability of 

A implies that they must have crossed at some intermediate point. This 

completes the proof of Lemma 1.16. 

LEMMA 1.17. Let f be a loop with excess self-intersection on the Moebius band 

M. Then f has a singular 1-gon or weak 2-gon. 

PROOF. If f is an orientation preserving loop, the arguments of the previous 

lemma apply unchanged to show that f has an embedded 1-gon or weak 2-gon. 



Vol. 51, 1985 CURVES ON SURFACES 101 

As in Lemma 1.16, this result does not use the fact that f has excess 

self-intersection but only uses the fact that f is not simple. 

If f is orientation reversing, we must use the hypothesis that f has excess 
self-intersection as Fig. 1.18 shows. In this case, we consider the loop f : S -+ A 

where A is the double covering of M and S is the double covering of the circle S. 

We let T denote the covering involution on A. As f has excess self-intersection, 

so does/~ Hence, by Lemma 1.12, the loop f has an embedded 1-gon or 2-gon.,If 

f has an embedded 1-gon D, we let A denote the sub-arc of S such that f(A) is 
the boundary of D. If A projects to a sub-arc of S, then this sub-arc defines a 

singular 1-gon for f. Otherwise, the image of A must equal S, so that A U ~-A = S. 

As f is injective on the interiors of A and rA and identifies the endpoints of A 

and zA, the only possibility is that A and zA intersect only in the two points of OA. 

But this implies that f is null-homotopic as [(A) and [(zA) are null-homotopic 

loops. This contradiction shows that A must project to a sub-arc of S as required. 

If f has an embedded 2-gon D, we let A and/z  denote the sub-arcs of S which 

form the boundary of D. These arcs yield a weak 2-gon for f unless the image in 
S of A or/z is all of S. Suppose that the image of A equals S, so that A U ~-h = S. 
As A is disjoint from/~, we must have tz C rA. But A and ~-A must overlap, so it 

follows that f(/z) meets f(zA) and hence that f(~-A) is a singular arc. As f(A) is 

simple, this is a contradiction and so completes the proof of Lemma 1.17. 

Fig. 1.18. 

§2. Curves homotopic to simple curves 

We start by considering arcs which are homotopic to simple arcs. We obtain 

the following result. 

THEOREM 2.1. Let f be a general position arc on a surface F such that [ is 

homotopic rel boundary to a simple arc g on F, but [ is not simple. Then [ has an 
embedded 1-gon or 2-gon. 

Before proving this, we will need the following special case. 
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LEMMA 2.2. Let f be a general position arc on a surface F such that f is 

homotopic tel boundary to a simple arc g in OF. If  f has no embedded 1-gons or 

2-gons, then f is simple. 

PROOF. If F is not compact, we can replace F by a compact subsurface which 

contains the image of the homotopy from f to g. Hence we may assume that F is 

compact. We will argue by induction on the Euler number x (F)  of F. As F has 

non-empty boundary, x(F)_-  < 1. Further x ( F ) =  1 only when F is the 2-disc. In 

this case, the result of Lemma 2.2 follows from Lemma 1.1. 

Now suppose that x ( F ) <  1. Then there is a non-separating simple arc 3' in F 

such that y is disjoint from the simple arc g in OF. We choose y within its isotopy 

class rel boundary so as to minimise the number of points in f tq 3+. If f fq y is 

empty, then f lies in the surface F '  obtained by cutting F along 3+ and f is 

homotopic in F '  to the simple arc g in OF'. Hence by our induction hypothesis f 

is simple and the induction step is complete. It remains to show that f fq 3' must 

be empty. 

Let H : I  x I ~ F  be a homotopy between the arcs f and g with /40= f, 

H, = g. We can arrange that H is transverse to y and then consider the 

1-submanifold H 1(7 ) of I x L As g and 3' are disjoint, H- l (y )  consists of circles 

and of arcs with endpoints in I x {0}. Any circles in H l(y ) can be eliminated by 

a homotopy of H. It follows that if f meets y, then there is a sub-arc A of I such 

that f(A) meets 3' only in its endpoints and f lA is homotopic rel 0A into 3'. 

Further, this homotopy of f lA takes place in the surface F'. It follows that f l A 

is an arc in F '  which is homotopic rel 0A to a simple arc in OF'. Now f lA has no 

embedded 1-gons or 2-gons as f has none. Thus our induction hypothesis implies 

that f I A is simple. As in §1, it now follows that we can find an arc 3" isotopic to 7 

but meeting f in less points as shown in Fig. 2.3. This uses the fact that any arc/z 

of f ( I )  which meets A must also meet 3' in the sub-arc with endpoints 0A, as 

shown in Fig. 2.3. For otherwise, we would find an embedded 2-gon for f. The 

existence of 7' contradicts our choice of 7. Thus we deduce that f C) 3' is empty, 

completing the proof of Lemma 2.2. 
m m  

Fig. 2.3. 
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Now we can prove Theorem 2.1 which we restate. 

THEOREM 2.1. Let f be a general position arc on a surface F such that f is 

homotopic rel boundary to a simple arc g on F, but f is not simple. Then f has an 

embedded 1-gon or 2-gon. 

PROOF. We will assume that f has no embedded 1-gons or 2-gons and will 

show that [ is simple. If the arc g is inessential in F, i.e. is parallel to an arc in OF, 

then Lemma 2.2 applies to show that f is simple. If g is essential in F, we choose 

a simple arc 3, in F such that 3/can be isotoped rel boundary to be parallel to g, 

and 3' meets f transversely in the least possible number of points. We can 

arrange that g is disjoint from y, by isotoping g if necessary. As f can be 

homotoped rel boundary to be disjoint from 3/, the proof of the induction step of 

Lemma 2.2 shows that f n 3' must be empty. Let F '  denote the surface obtained 

from F by cutting along 3'. Then f is homotopic in F' to the simple arc g which is 

in turn parallel to an arc in OF'. As f has no embedded 1-gons or 2-gons, Lemma 

2.2 implies that f is simple and the proof of Theorem 2,1 is complete. 

If f is a loop on a surface F which is homotopic to a simple loop, we use similar 

arguments to obtain the following result. 

THEOREM 2.4. Let f be a general position loop on a surface F with non-empty 

boundary. If f is homotopic to a simple loop g but is not simple, then f has an 
embedded 1-gon or 2-gon. 

PROOF. As usual, we will assume that F is compact and that f has no 

embedded 1-gons or 2-gons and will show that f is simple, by induction on the 

Euler number x (F)  of F. If x (F)  equals 1, then F is the 2-disc and the result 

follows by Lemma 1.1. Now suppose that x(F)<= O. If there is a non-separating 

simple arc 6 in F disjoint from g, we choose an arc 3' isotopic rel boundary to 6 

so as to meet f in the least possible number of points. We can suppose that g is 

disjoint from Y, by isotoping g if necessary. As f can be homotoped to be 

disjoint from 7, the proof of the induction step of Lemma 2.2 shows that f O 3, 

must be empty. Hence f lies in the surface F '  obtained by cutting F along 3,. Now 

our induction hypothesis implies that f is simple as required. 

If there is no such arc 6 in F, then F has connected boundary C and g is 

parallel to C. We can find a non-separating simple arc 6 in F such that 6 meets g 

in exactly two points. As usual, we choose 3, isotopic rel boundary to 6 so as to 

meet f in the least possible number of points and let F '  denote the surface 

obtained by cutting F along y. Now the arguments of Lemma 2.2 show that f 

must meet 3, in two points. Thus f is cut by y into two sub-arcs h and/z. Further 
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the homotopy jr, from jr to g can be chosen so that y meets/ ,  in two points, for 

each t. Hence the arcs A and/z are each homotopic to simple arcs in OF' with the 

homotopy taking place in F' ,  and during the homotopy 0A and 0/x remain in ~/. It 

follows that each of A and/x is homotopic rel boundary to a simple arc in OF'. 

Hence Lemma 2.2 implies that A and/z are both simple. Now A together with an 

arc in OF' bounds a 2-disc R. If A meets/~, then some sub-arc of/~ lies in R and 

yields an embedded 2-gon D between A and /z. But D would then be an 

embedded 2-gon for jr which contradicts our hypothesis. Hence A and /z are 

disjoint arcs in F '  and so jr is a simple loop in F as required. 

Before we can consider loops on closed surfaces, we need the following 

generalisation of Lemma 2.2. 

LEMMA 2.5. Let jr be a general position arc on an orientable surface F such that 
jr is homotopic tel boundary into OF. Ijr jr has no embedded 1-gons or 2-gons, then jr 
lies in some collar neighbourhood of OF. 

REMARK. This result is false if we omit the orientability hypothesis on F. For  

the arc jr on the Moebius band M shown in Fig. 2.6(b) has no embedded 1-gons 

or 2-gons and yet cannot lie in a collar neighbourhood of 0M. This is because jr 

has excess double points, as is shown by the homotopic arc g in Fig. 2.6(a), and 

hence if jr lay in an annulus, Lemma 1.9 would force jr to have an embedded 

1-gon or 2-gon. 

2 

3 

4 

(a) (b) 
Fig. 2.6. 

PROOF OF LEMMA 2.5. As usual, we assume that F is compact and argue by 

induction on the Euler number x ( F )  of F. If x ( F )  equals 1, then F is D 2 and the 

result is trivial. If x (F )  equals 0, then F is the annulus and the result is again 

trivial. (This uses the orientability of F.) Now suppose that x ( F ) < 0 .  Let C 

denote the component of 0F which contains 0jr. Then there is a non-separating 

simple arc or loop 7 on F which is disjoint from C. We choose y to meet jr in the 

least possible number of points. If jr N y is empty, then jr lies in the surface F '  
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obtained by cutting F along y, and f is homotopic rel boundary into OF'. Hence 

our induction hypothesis implies that f lies in a collar neighbourhood of C as 

required. It remains to show that f n 3, must be empty. If 3' is an arc, this follows 

from the proof of Lemma 2.2, so we suppose now that y is a circle. 

Let H : I × I ~ F be a homotopy with Ho = f and Hi(I) C C. We can assume 

that H is transverse to 3' and then consider the 1-submanifold H '(3') of I × / .  

As C and y are disjoint, H- I (y )  consists of circles and of arcs with endpoints in 

I x {0}. We can homotop H to eliminate all circles from H-I(y). It follows that if 

f meets y, then there is a sub-arc ~ of I such that f (h)  meets 3' only in its 

endpoints and f l,~ is homotopic rel c~)t into y. Further if F '  denotes the surface 

obtained from F by cutting along y, then this homotopy takes place in F' .  It 

follows that f [A  is an arc in F '  which is homotopic rel ah into OF'. Hence our 

induction hypothesis implies that f(A) lies in a collar neighbourhood of aF'. Let 

A be an annulus in F with 3' as one of its boundary components such that f(A) 

lies in A, and let 3', denote the other component of OA. We know that f N A 

consists of arcs such that each arc has no embedded 1-gons and 2-gons and there 

are no embedded 2-gons between any two of these arcs. Hence Lemma 1.14 

implies that any arc of f n A with both endpoints on 3'1 must be disjoint from 

f(A). Thus, by choosing yl closer to 3', so that A is thinner, we can suppose that 

no arc of f N A has both endpoints on y~. It follows that yl meets f in less points 

than 3' does which contradicts our initial choice of 3'. This contradiction shows 

that f n y must be empty and completes the proof of Lemma 2.5. 

Using this result, we can prove the following. 

THEOREM 2.7. Let f be a general position loop on an orientable surface F. If  f is 
homotopic to a simple loop g but is not simple, then f has an embedded 1-gon or 
2-gon. 

PROOF. This result follows from Theorem 2.4 if F is not closed, and follows 

from Lemma 1.1 if F is the 2-sphere. So we will suppose that F is closed but not 

S 2. As usual, we will assume that f has no embedded 1-gons and 2-gons and will 

show that f is simple. We choose 3' to be an essential simple loop on F disjoint 

from g which meets f in the least possible number of points. (If g is essential, we 

can choose 3' parallel to g.) Let F '  denote the surface obtained by cutting along 

3'. If f n 3' is empty, then f is a loop in F '  and is homotopic in F '  to a simple loop. 
Hence, Theorem 2.4 implies that f is simple as required. If f n y is not empty, 

the fact that f can be homotoped to be disjoint from y implies that there is a 

sub-arc of I such that f()t) meets y only in its endpoints and f l A is homotopic 

rel O,~ into 3'. Further this homotopy takes place in F' .  Thus f I '~ is an arc in F '  



106 J. HASS AND P. SCOTT Isr. J. Math. 

which is homotopie rel boundary into OF'. Hence Lemma 2.5 implies that f (h)  

lies in a collar neighbourhood of OF'. Now the proof of Lemma 2.5 shows that 

there is a circle 7l in F which is parallel to 7 and meets f in less points. This 

contradicts the choice of 3' and shows that f f3 7 must be empty. This completes 

the proof of Theorem 2.7. 
The results proved so far say nothing about loops on a closed non-orientable 

surface, and we are unable to decide whether Theorem 2.7 holds for all such 

surfaces. However, certain cases can be handled exactly as in the orientable case. 

For example, let f be a general position loop on a closed non-orientable surface 

F such that f is homotopic to a simple loop g and f has no embedded 1-gons or 

2-gons. Suppose that there is a simple 2-sided loop y on F such that 7 is disjoint 

from g and the surface F'  obtained from F by cutting along 3' is orientable. Then 

the arguments of Theorem 2.7 apply unchanged to show that f is simple. 

Unfortunately such a loop 3' need not always exist, even when the surface 

involved is the Klein bottle. However, we can show that Theorem 2.7 holds for 

loops on the Klein bottle, using the fact that there are only four isotopy classes of 
simple loops on the Klein bottle. One can also show easily that Theorem 2.7 

holds for loops on the projective plane p2. 
The arguments used in the proof of Theorem 2.7 and earlier results prove the 

following statement about loops which need not be homotopic to simple loops. 

LEMMA 2.8. Let f be a loop on an orientable surface F which does not have 
embedded 1-gons or 2-gons. Let y be an essential simple arc or loop on F and 
suppose that f can be homotoped to be disjoint from 3,. Then there is a simple loop 

y' isotopic to y such that f is disjoint from Y'. 

PROOF. Choose 7' isotopic to 7 and with least possible intersection with f. 

COROLLARY 2.9. Let f be a loop on an orientable surface F which does not 

have embedded 1-gons or 2-gons. I f  each component of the surface obtained from 

F by cutting along f (S  ~) is a 2-disc, then f cannot be homotoped into any 

incompressible subsurface F1 of F unless zcl(F1) = Try(F). 

PROOF. If the result is false, there is an essential simple arc or loop y on F 

such that f can be homotoped disjoint from y. Lemma 2.8 shows that f is already 

disjoint from 7, contradicting our hypothesis. 
As a consequence of Corollary 2.9, we can exhibit a loop f on the closed 

orientable surface F~ of genus g, such that f is not homotopic into any proper 

incompressible subsurface, so long as g = 2. Note that in the case g = 1, any loop 

on the torus is homotopic into some sub-annulus. We start with two arcs, as 
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shown in Fig. 2.10, on the surface X obtained by removing the interior of a 2-disc 

from the torus. One arc is simple, the other not. There are no embedded 1-gons 

or 2-gons for these arcs. These arcs divide X into five regions each of which is a 
2-disc and each region meets OX in a single arc or the empty set. We then 

assemble Fg from g copies of X and a g-holed sphere Y, and construct the 

required loop f on Fg so that its intersection with each copy of X is as in Fig. 

2.10. If g is odd, the intersection of f with Y is as shown in Fig. 2.11. If g is even, 

the intersection of f with Y is as shown in Fig. 2.12, which is the same as Fig. 2.11 

apart from the single double point. As f Cl Y cuts Y into 2-discs and as f f-/X 

cuts X into 2-discs each meeting OX in at most one interval, it follows that f cuts 

F~ into 2-discs. If f has an embedded 1-gon or 2-gon D, it cannot lie in any copy 

A B C D 

Fig. 2.10. 

Fig. 2.11. 

Fig. 2.12. 
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of X nor in Y by our construction. Hence D must meet OY. If D is a 1-gon, this 

yields an embedded 2-gon D '  with one edge in O Y and the other edge a sub-arc 

of f, which is impossible. If D is a 2-gon, we denote its edges by A and/z. No arc 

of OY fq D can have both endpoints in A or both in/x as this would again yield 

an impossible 2-gon D'.  Hence every arc of OY t3 D joins A to/x. Hence OY cuts 

D into a triangle at each end and some quadrilaterals. Clearly any quadrilaterals 

must lie in Y so that OY meets D in only one or two arcs. In any case, one of the 

triangles lies in one of the copies of X and so must be one of the two triangles 

shaded in Fig. 2.10. Now the way that f f) Y joins up the various copies of X 

yields a contradiction in all cases. We conclude that the loop f described in Fig. 

2.11 or 2.12 has no embedded 1-gons or 2-gons, so that Corollary 2.9 can be 

applied to f as required. 

§3. The weak results 

The arguments in this section have their origin in the proof of the following 

well-known result whose proof we give for completeness. 

LEMMA 3.1. Let C, and Ca each be a simple arc or loop on a surface F. If C, 

and C2 have excess intersection, then there is an innermost embedded 2-gon 

between them, i.e., a 2-gon whose interior does not meet C, or C2. 

PROOF. We consider the pre-images C, and C2 of C, and C2 in the universal 

convering P of F. The fact that C, can be homotoped rel 0C, so as to meet C2 in 

less points implies that there are components S and T of t~l and C'2 respectively 

such that S f3 T consists of more than one point. Hence there is a 2-gon D in P 

between S and T. This 2-gon need not be innermost, i.e., its interior may meet 

C'~ or C'2, but if it is not innermost, there must be a smaller 2-gon inside. This is 

because no component of Cj or C2 can cross both S and T as this would 

contradict the fact that C, and C2 are simple curves in F. It follows that there is 

an innermost 2-gon B in F between some component S~ of t~l and some 

component $2 of C2. We will show that B projects to an embedded 2-gon in F 

between C, and (?2 by showing that B is disjoint from all translates gB, where g 

is a non-trivial element of 7r,(F). 

Denote the two vertices of B by x and y and suppose that g is a non-trivial 

element of ~r,(F) such that gB meets B. Then gx or gy equals x or y. As g 

cannot fix any point of F, we must have gx = y or gy = x. It follows that gS~ = Sl  

and gS2 = $2, as S~ and $2 are the only components of C, and C2 passing through 

x or y. Hence C~ and C2 must be loops on F which represent g and intersect in a 
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single point. It follows that g must be orientation reversing. But this means that 
Ct and C2 do not have excess intersection which contradicts our hypothesis. This 

completes the proof of Lemma 3.1. 
It is natural to ask if there is a similar result when two singular arcs or loops 

have excess intersection. However, the examples in Fig. 0.1 show that there is no 

such result in the case of two singular loops and similar examples show that there 

is no such result in the case of a singular arc and loop with excess intersection. In 

the case of two singular arcs, it is easy to prove the following analogue of Lemma 
3.1. 

LEMMA 3.2. Let f and g be two arcs on a surface F which are in general 
position. If f arid g have excess intersection, there is a singular 2-gon between them. 

PROOF. The fact that f and g have excess intersection implies that there are 

lifts f and g of f and g to the universal covering P of F such that f intersects g in 

more than one point. If we let x and y denote two points of f f3 ~ and let At and 

A2 denote the sub-arcs of f and ~ respectively with endpoints x and y, then A~ is 

homotopic to A2 tel OAt because F is simply connected. Hence At and A2 project 

to sub-arcs of f and g which define a singular 2-gon between them. 
For the rest of this section, we will consider the self-intersections of a single 

arc or loop. Our first, rather trivial, result is the following. 

• LEMMA 3.3. Let f be a general position arc on a surface F. If  f has excess 
self-intersection then f has a singular 1-gon or a weak 2-gon. 

PROOF. Let f denote a lift of f to the universal covering F of F. If / is 

singular, then Lemma 1.1 implies that f has an embedded 1-gon. This will 
project to a singular 1-gon for f. If f is simple, the fact that f has excess 

self-intersection implies that for some a E ¢rl(F), a f  meets f in more than one 
point. Thus there is an embedded 2-gon in F between f and a/~ This will project 

to a weak 2-gon for f, completing the proof of Lemma 3.3. 
Our main result about self-intersections of loops is more complicated to prove. 

First we need the following result. 

LEMMA 3.4. Let f be a general position loop on a surface F, not S 2 or p2, and 

suppose that[ represents [3 = a ~, where a is a non-trivial and primitive element of 
7rl(F). Let P denote the universal covering of F and let F~ denote the quotient of P 

by the cyclic subgroup of 7rl(F) generated by a. Let f~ : $1---~ F~ be the lift off,  and 
let l denote one of the lines in P above [~(S~). Then f has least possible 
self-intersection if and only if f~ has least possible self-intersection and, for all g in 
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xl (F)  such that g is not a power of a, the intersection gl A I consists of at most one 
point. 

REMARK. It is easy to prove a similar result for arcs on a surface. 

PROOF. First we note that there is a general position loop f '  homotopic to f 

such that f"  has least self-intersection and, for all g in ~rl(F) such that g is not a 
power of a, the intersection gl' t3 l' consists of at most one point. To obtain f ' ,  

we first choose a complete hyperbolic or Euclidean metric on F, as appropriate, 

and take a geodesic loop representing/3. If d = 1 we take f '  to be this loop. If 

d > 1, we choose a loop f" in F, which is close to the geodesic loop just 

described and which represents/3 and has least possible self-intersection. The 

projection of this loop to F is the required loop f' .  

Now we consider the picture in F~, the quotient of P by the cyclic group 

generated by/3. We let f~ denote the lift of f'~ to F~. The loop f~ is the image of a 
simple line l' in F. The lines gl', for g in ~r~(F), project to possibly singular lines 

or loops in Fo. Our choice of f '  shows that each such singular line meets the loop 
f~ in at most one point. Further each singular loop is disjoint from f~ except for 
those loops which are the images of the line al', a21 ' , . . . ,  o~d-~l'. (Unless F is the 

torus or Klein bottle, these are the only loops which can occur.) Now any 

homotopy of the loop f '  induces a proper homotopy of all these singular lines 

and circles. In particular, if gl' meets l' in a single point, they must continue to 

meet after any homotopy of f ' ,  because a line in F~ which meets f~ once cannot 

be properly homotoped to be disjoint from f~. It follows that f '  has the least 

possible self-intersection. Further, if f also has least possible self-intersection 

then gl N l consists of a single point if and only if gl' N l' does. Thus it follows 
that [, has the same number of double points as f ' .  Now it follows that f has 
least self-intersection if and only if f ,  has least self-intersection and, for all g in 

Try(F) such that g is not a power of a, the intersection gl N l consists of at most 

one point. 

Now we come to the main result of this section. 

THEOREM 3.5. I f  f is a general position loop on a surface F such that f has 

excess self-intersection, then f has a singular 1-gon or a weak 2-gon. 

PROOF. We divide the proof into cases. 

Case 1. f is null-homotopic or F is the projective plane p2 
If f is null-homotopic, then f has a lift f to the universal cover P of F. If f is 

singular, it has an embedded 1-gon by Lemma 1.1, and this will descend to a 
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singular 1-gon for f. If f is simple, there must be an element g of 7rt(F) such that 

gf meets ~ because f is singular. Hence there is an embedded 2-gon between f 

and g/~ This will descend to a weak 2-gon for f, so that we have the required 
result when f is null-homotopic. 

If f is an essential loop on p2 which is not simple, we consider the covering 

map f into S 2. This cannot be simple and so has an embedded 1-gon. Now the 

arguments in the proof of Lemma 1.17 show that this yields a singular 1-gon for f 
as required. 

From now on we will suppose that f is essential. 

Case 2. F is not closed 
As usual, we can suppose that F is compact. We suppose that f represents 

/3 = a d where a is a non-trivial, primitive element of ¢rl(F). We will also assume 

that f does not have a singular 1-gon or weak 2-gon and will obtain a 

contradiction. Let F, denote the quotient of P by the cyclic group generated by 

a and let f~ :S1--~F~ be the lift of f. If f~ possesses a singular 1-gon or weak 

2-gon, this will descend to yield a singular 1-gon or weak 2-gon for f which 

contradicts our hypothesis. Hence f ,  does not possess a singular 1-gon or weak 

2-gon and so Lemma 1.16 or 1.17 shows that f~ has minimal self-intersection. It 

also follows that the pre-image in F of f~(S ~) consists of simple lines. If f~ is 

orientable, this is clear from Lemma 1.12. If Fo is non-orientable we simply note 

that, as in the orientable case, we can suppose that f~ is monotone in F~, i.e., 

there is a homotopy equivalence 7r:F~ ~ S 1 s.t. 7r ofo is monotone. We let l 

denote one of these lines. 

As f has excess self-intersection but f~ does not, Lemma 3.4 shows that there 

must be an element g in 7rl(F) such that g is not a power of a and gl meets l in 

more than one point. There is a 2-gon D in F between I and gl. We will show 

that the two arcs of OD descend to sub-arcs of S 1 and this yields a weak 2-gon for 

f contradicting our assumption. More precisely if OoD denotes D O l and 01D 

denotes D N gl, we will prove that, for all non-zero integers n,/3"(OoD) n OoD 
and (g/3g-X)"(OlD)O cg~D are both empty. 

We start by choosing disjoint simple arcs ai such that F cut along the ai's is a 

2-disc R. We choose these arcs so as to minimise their intersection with f(S~). 
Then the a~'s cut f into sub-arcs/xj each lying in R. As f has no singular 1-gons, 

Lemma 1.1 shows that each/zj is simple and as f has no embedded 2-gons, the 

usual arguments show no/xj can have both ends on the same a~. Let R denote a 

lift of R to i~, the universal covering of F. Then P is tiled by the translates by 

~r~(F) of R. We let F denote the graph dual to this tiling. As P is simply 
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connected, F is a tree. Abstractly, F is the graph of Try(F) with respect to the 

generating set determined by the a~'s. We let d (x ,y)  denote the distance 

function on vertices of F given as the least number of edges of a path in F from x 

to y. If/3 is an element of 7rt(F), it acts on F leaving invariant a unique line, 

called the axis of/3, which contains all vertices x with minimum d(x,/3(X))-This 
minimum value is called the translation length of/3 and we denote it t(/3). It 

equals the length of /3 as a word in our generators of 7rt(F), after cyclic 

reduction. 

We choose a projection p :F - -~F  which respects the actions of Try(F). By a 

homotopy of the/xj 's in R rel boundary, we can arrange that the restriction of p 

to each /xj is monotone. Hence the restriction of p to each component of the 

pre-image of f (S ~) is also monotone. Recall that l is a component of this 

pre-image stabilised by/3. The axis of/3 as it acts on F is p(l), which we denote L. 

Note that L is also the axis for a. 

Now we consider the projection p(D) of the 2-gon D into the graph F. 

Clearly, p(D) C L O gL, because of the monotonicity properties of p. We write ,~ 

for L N gL. We claim that I(A)< t (a) ,  where l(A)denotes the length of A. This 

implies that, for all non-zero integers n, the sets a 'A n A and (gag-J)nA n A are 

both empty, and as 13 = a a, it follows that/3"(9oD) n c~oD and (g/3g-')n(a~D)O 
9~D are both empty as required. In order to prove our claim, we suppose that 

l (A)= > t(a) and obtain a contradiction as follows. There must be a vertex x of F 

in A such that a(x) also lies in A. Then a(x)  must equal (gag-~)(x) or 

(gag-~)-t(x). As 7rt(F) acts freely on F, we deduce that gag -t equals a or a -t, 

which implies that g and c~ generate a cyclic subgroup of Try(F), contradicting 

the fact that g is not a power of a. This completes the proof of Case 2 of 
Theorem 3.5. 

Case 3. F is closed, but is not the torus, Klein bottle, 2-sphere or projective 
plane 

Let f be a loop on F representing /3 = a d such that f has excess self- 

intersection but does not have a singular 1-gon or weak 2-gon. As discussed at 

the start of Case 2, the pre-image in P of f(S 1) consists of simple lines. Further, if 

l denotes one of these lines with stabiliser/3, there is an element g in ~'I(F) such 

that g is not a power of a and gl meets l in more than one point. Let G denote 

the subgroup of zrl(F) generated by a and g and let F1 denote the quotient of P 

by G. Then Lemma 3.4 shows that the lift f~" Sl--->F~ of f has excess 

self-intersection, becaus~ gl meets l in more than one point. Also ft has no 

singular 1-gons or weak 2-gons, as these would yield singular 1-gons or weak 
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2-gons for f. Now F, cannot be closed, as ~r~(F,) can be generated by two 

elements but F is not the torus or Klein bottle. Hence Case 2 applied to f, gives 

the required contradiction. 

Case 4. F is the torus 

In this case, we will prove that if f is an essential loop on the torus F with 

excess self-intersection, then f has an embedded 1-gon or 2-gon, which is a 

stronger result than we need. We will argue as in §2. Let f be a loop on F 

without embedded 1-gons or 2-gons. Then f represents a power of an essential 

simple loop % and so f can be homotoped to be disjoint from 7- We choose ~ so 

as to meet f transversely in the least possible number of points. The arguments 

in the proof of Theorem 2.7 show that f must be disjoint from 7 and so lies in the 

complementary annulus. Now Lemma 1.12 shows that f has least possible 

self-intersection, as claimed. 

Case 5. F is the Klein bottle K 

If f is an orientation reversing loop on K with excess self-intersection, we let f 

denote the covering map into the orientable double cover T of K. As f has 

excess self-intersection, so does/~ Now Case 4 implies that f has an embedded 

1-gon or 2-gon. Finally the arguments of Lemma 1.17 show that this yields a 

singular 1-gon or weak 2-gon for f as required. 

If f is an orientation preserving loop on K with excess self-intersection, we 

proceed as follows. Recall that ~-,(K) has presentation {a, b : b-~ab = a '}, so 

that every element of 7r,(K) can be expressed in the form a rb ~. Further a is an 

orientation preserving element of ~-~(K) and b is orientation reversing. Thus f 

must represent an element of 7r,(K) of the form a'b 2~. We let S denote the 

covering of K corresponding to the subgroup of ~'~(K) generated by a r and b ~-s. 

Thus S is a torus and is a regular covering of K and f has a lift f~ into S. Further 

fl is homotopic to a simple loop on S. If f~ is not simple, Theorem 2.7 shows that 

)rl has an embedded 1-gon or 2-gon. This will project to a singular 1-gon or weak 

2-gon for f. Otherwise f, is simple and so are all its translates in S by the covering 

group G which acts on S with quotient K. As f has excess self-intersection there 

must be an element z of G such that .cf~ and f~ have excess intersection. Now 

Lemma 3.1 shows that there must be an embedded 2-gon between f~ and ~-f~, and 

this will project to a weak 2-gon for f, as required. This completes the proof of 

Theorem 3.5. 

We end this section by explaining how to deduce some of the results of [1] and 

[2] from Theorem 3.5. A loop on a surface with a metric is called shortest if it is 

shorter than all freely homotopic loops. 
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THEOREM 3.6 ([1], [2]). Let F be a surface with a complete Riemannian metric 
and let a be a non-trivial primitive element of zr~(F). I f  f is a shortest loop on F 

representing t~, then f has least possible self-intersection. 

PROOF. First note that our hypothesis that a is primitive does not allow f to 

factor through a covering of circles. Thus f is self-transverse. It need not be in 

general position as there may be triple points, but the result of Theorem 3.5 is 

still applicable. Hence, if f has excess self-intersection there are sub-arcs A and/z 

of S ~ such that f l A  and f l/z are homotopic rel boundary. Now A and/_~ need 
not be disjoint, so we cannot necessarily do the usual interchange construction to 

obtain a shorter loop f '  homotopic to f. (Consider, for example, the loop in Fig. 

0.5.) Instead we argue as follows. Let X and/2 be sub-arcs of S ~ which contain A 

and g in their respective interiors. As f is a shortest loop on F, f l,~ and f f/2 are 
each shortest arcs on F rel boundary. Now we define new, possibly singular, arcs 

A' = A - A +/~ and/~ '  =/2 - / x  + A on F. Clearly A is homotopic to A' and/2 is 

homotopic to /x'. Also 

l(;~') + l (~ ' )  = l (A)+ I(/2), 

and, as A and/2  are distinct, the arcs A' and g '  have corners. After rounding 

these corners we obtain shorter arcs A", /z" so that 

I(A") + l(/z") < l()~) + l(/2). 

It follows that I(A")< l()~) or l(/.t") < 1(/2), either of which contradicts the fact 

that f [ ,~  and f f/2 are shortest arcs rel boundary. This completes the proof of 

Theorem 3.6. 
If one considers a shortest loop f on an orientable surface F representing a 

power a ~ of a, then [1] shows that f factors through a covering of a loop g 
representing a. This also can be deduced from the above approach using the fact, 

Lemma 1.16, that any non-simple loop on the annulus has an embedded 1-gon or 

weak 2-gon. 

§4. Curves on orientable surfaces 

In this section, we show how to strengthen the results of §3, when one restricts 

attention to curves on orientable surfaces. Our  first result strengthens Lemma 

3.3. As usual, P denotes the universal cover of F. 

LEMMA 4.1. Let f be a general position arc on an orientable surface F. I f  f has 

excess self-intersection, then f has a singular l-gon or 2-gon. 
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PROOF. We suppose that f has no singular 1-gons and will show that f must 

have a singular 2-gon. As in the proof of Lemma 3.3, it follows that the 

pre-image in P of f (I)  consists of simple arcs and that if l denotes one of these 
arcs, there is g in ~-~(F) such that gl meets 1 in more than one point. Let F~ 

denote the quotient of F by the cyclic group generated by g. The image of I in F~ 

is a singular arc L, and L has excess self-intersection by the analogue for arcs of 

Lemma 3.4. As F is orientable, so is Fg and hence Lemmas 1.2 or 1.9 imply that 

L has an embedded 1-gon or 2-gon. Now an embedded 1-gon for L would 

project to a singular 1-gon for f, contradicting our assumption. Hence L has an 

embedded 2-gon. Let A and/z denote the two edges of the 2-gon. There are arcs 

and/2 in I such that under the projection map of l into Fg, A and/2 are sent 

homeomorphically to A and/z.  In particular, ,~ and fi are disjoint sub-arcs of I 

whose projections into Fg are homotopic rel boundary. It follows at once that the 

projections of A and fi into F are also homotopic rel boundary and so yield a 

singular 2-gon for f. This completes the proof of Lemma 4.1. 

Our next result strengthens Theorem 3.5. The basic idea of the proof is as for 

Theorem 3.5. 

THEOREM 4.2. Let f be a general position loop on an orientable surface F. l f  f 
has excess self-intersection, then f has a singular 1-gon or 2-gon. 

PROOF. Case 1. f is null-homotopic 
Then f is homotopic to a simple loop. Thus Theorem 2.7 implies that f has an 

embedded 1-gon or 2-gon. 

From now on, we suppose that f is not null-homotopic. 

Case 2. F is closed 

If F is the torus, then Case 4 of Theorem 3.5 shows that f must have an 

embedded 1-gon or 2-gon, which is a stronger result than is required. If F is not 

the torus, we will deduce the required result from the case when F is not closed, 

in exactly the same way as in the proof of Case 3 of Theorem 3.5. 

Case 3. F is not closed 

As usual, we assume that F is compact with boundary. We also assume that f 

represents/3 = a d where a is a non-trivial, primitive element of 7rl(F), and that 

f has excess self-intersection but does not have singular l-gons or 2-gons. We 

will obtain a contradiction. 

Exactly as in Case 2 of the proof of Theorem 3.5, the pre-image in P of f (S  ~) 
consists of simple lines. If we let I denote one of these lines stabilised by/3, there 
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is g in ~r,(F) such that g is not a power of a and gl meets 1 in more than one 

point. Also by choosing arcs a~ in F which cut F into a 2-disc R, we obtain a 

tiling of P by copies of R. The graph F dual to this tiling is a tree and, by 

homotoping f in F, we can suppose that we have a projection p : P--~ F such that 

the restriction of p to each of the lines gl is monotone. 

As gl meets l in at least two points, there is a 2-gon D between I and gl. Our 

aim is to show that we can choose g and D so that D projects to a singular 2-gon 

for f. If we let O~,D denote D N l and OlD denote D N gl, we need to show that 

/3"(00D)O ~9oD and (g/3g-l)"(O,D)n cg~D are both empty, for any non-zero 

integer n, and that g/3n(OoD)n OlD is empty, for all n. As in §3, we will achieve 

this by considering the projection of D into F. The axis of/3 as it acts on F is p(l) 
which we denote L, and p ( D ) C L  O gL. Note that L is also the axis for a. 

We will need some technical results about F and the action of 7rl(F) on F. 

Recall that F is the graph of 7r,(F) with respect to a certain set of generators. 

We say that an edge path in F is reduced if it does not contain an edge 

immediately followed by its inverse. We denote the length of a reduced path 3' 

by I(y). Any two vertices of F are joined by a unique reduced path. 

LEMMA 4.3. Let a and g be non-trivial elements of zq(F) with distinct axes L 

and M respectively. Let A denote L n gL and iz denote L O M. Then 
(i) I(A)< t(a); 
(ii) if I~ is empty, A is also empty; 
(iii) if tz is non-empty, either t(g) = l(tz ) and A meets M in a single point or 

t (g)~  l(tx) and )t Cir. 

PROOF. We start by observing that 3. must be connected and hence an 

interval, as F is a tree. 

(i) If l()t) :> t(a), there is a vertex x of F in A with c~(x) also in )t. Also a(x)  
must equal gag-'(x) or (gag-t)-L(x). As 7r,(F) acts freely on F, it follows that 

gong ' equals a or a 2, so that the group generated by g and a is cyclic. This 

contradicts our hypothesis that g and ot have distinct axes L and M. 

(ii) If /z = L n M is empty, we let 3, denote the unique shortest path in F 

joining L and M. Thus gy joins gL and M. Let 3 denote the unique shortest 

path in M joining "y to g'y. Note that 3 is a non-trivial path as g is non-trivial. 

Suppose that there is a vertex x of F in )t = L fl gL, and let e and e '  denote the 

unique reduced paths in L and gL joining x to 3' and g'y respectively. Then the 

paths e U 3' and e ' U  g',/U 3 are distinct reduced paths in F with the same 

endpoints. See Fig. 4.4. This contradiction shows that A must be empty, proving 

part (ii) of the lemma. 
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M 6 

Fig. 4.4. 

(iii) I f /z  = L n M is non-empty, we note that /z  must be an interval. Further 

/x has finite length. In fact l(/~) must be less than the least common multiple N 

of t (a)  and t(g). For otherwise, choose vertices x and y of/z, distance N apart. 

There are integers r and s such that y = grx = a'x. As ~'~(F) acts freely on F, it 

follows that gr = a s. As Try(F) is a free group, it follows that g and a generate a 

cyclic subgroup. This contradicts our hypothesis that the axes of g and a are 

distinct. 

Now the line L is a union of three intervals Io, /~ and It, and thus 

gL = gIo U gtx U glt. We orient M so that g moves points of M in the positive 

direction and choose Io and It so that I~ n M is on the positive side of I0 n M. 

Now it is clear that gIo cannot meet I0 and that gI~ cannot meet Io or It. Hence A 

mtist equal /z n g/x, unless t(g) = l(lz), in which case A is contained in I, and 

meets M in a single point. (Possibly A is this single point.) This completes the 

proof of Lemma 4.3. 

LEMMA 4.5. Let a and g be non-trivial elements of zn(F) with distinct axes L 

and M respectively. Let A denote L n gL and let I~ denote L O M. Suppose that 
t(g)<= t(got~), for all integers n. 

(i) I f  t(g) = l(~ ), so that A meets M in a single point, then ganA O A is empty, 

for all integers n. 
(ii) I f  t(g) ~ l(Ix ), so that A C IX, and if ~ is a sub-arc of A with l(X) <-<_ t(g), then 

ga n~ n ~ is empty for all non-zero integers n. 

PROOF. (i) Recall from the proof of Lemma 4.3 that L can be expressed as a 

union of intervals Io,/z and I~ and that A C glo n I~. See Fig. 4.6. Let X denote 

Io O M, and let Y denote the other end of g-~A. We will prove that if u denotes 

the sub-arc g-~A U/z U A of L, then l ( v ) <  t(a). This implies the required result 

as follows. If anA CI~, then gala cannot meet A as it cannot even meet I~. 

Otherwise a"A must lie in Io and be disjoint from g-lA because l ( v ) <  t(a). 
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Fig. 4.6. 

Hence ga"A cannot meet A in this case either. It remains to prove the required 

inequality. 
We assume that L and M are oriented so that ot and g translate in the positive 

direction and that these orientations agree on/~. First note that we must have 

t ( g ) <  t(a). For otherwise t( t~)_ -< t(g) and as l(p,)= t(g), it follows that g-'¢¢ 

sends X to a point of/~ closer to X than t(g). Hence t(ga-') is strictly less than 

t(g) contradicting our hypothesis on g. Now we will show that ag-'(A) cannot 

meet A. As a(X) cannot lie in/~, because t(a) >/(/,L), this will show that ag-l(A) 

lies in I, - A and so will prove that t ( ~ ) >  l(v) as required. Suppose that ag-t(A) 

does meet A. As A and g-~A have the same length, one of a (X)or  a (Y) must lie 

in A. If c~(X) lies in A, then g-~a(X) lies in g-tA so that ag-'aX lies in L. If d 

denotes the distance of a (X) from g(X), then d is also the distance of t~g-~a (X) 

from a(X) .  It follows that ag-'a(X) equals g(X),  as these two points lie in L at 

the same distance and in the same direction from a(X) .  Hence ag-~a = g  as 

~r~(F) acts freely on F. Hence ag-~ has order two, so that ag -1 is trivial, as lr,(F) 

is free. But this contradicts our hypothesis that g and a have distinct axes. If 
a(Y) lies in A, we obtain a contradiction in the same way, by showing that 

ag-la(y) = g(Y). 
(ii) Now suppose that t(g)~ l(l~) so that A C/t, and let ,~ be a sub-arc of A 

with l(A)_-< t(g). If ga"ft meets )~, then t(ga")=< t(g). But the hypothesis of our 

iemma is that t(g) <-_ t(ga"), for all n. We deduce that if ga"A meets ,~ then 

t(ga")= t(g). This implies that ga"A fl A is a single vertex. We label the 

endpoints of ,~ by v and w so that got"(v) = w. But g translates vertices of m by 

distance t(g) so that we must also have w equal to g(v) or g-~(v). As ~r,(F) acts 

freely on F we deduce that ga" equals g or g- ' ,  either of which is impossible 

when n is non-zero. This completes the proof of Lemma 4.5. 

Now we return to our proof of Case 3 of Theorem 4.2. Recall that as f has 

excess self-intersection but no singular 1-gons or 2-gons, the pre-image of f(S') 
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in l~ consists of lines gl, where l is stabilised by/3 and that there is g in ~rl(F) 

which is not a power of a such that gl meets l in more than one point. In this 

situation we say that gl n l is excess. 
Our first step is to show that there exists g in 7rl(F) such that gl n I is excess, 

that no power g" of g, for n => 2, has this property, and that t(g)<= t(gan), for all 

integers n. We will construct a sequence of elements gi of ¢rl(F) and show that 

this sequence must stop at an element of the required type. We start with gl such 

that gll n I is excess. If t(g~ar)< t(g~), for some r, we let g2 be one of the 

elements g~a r of shortest translation length. Note that g21 = g~l so that trivially 

g2t n I is excess. If some proper power g~' of g2 has the same property, we let g3 

denote g~. Now we repeat the above two steps. If this process stops, we are done, 

but it is not "obvious that it should stop. We use our analysis of the intersection 

L n gL carried out in Lemma 4.3. Note that if gl n I is excess, then gL n L must 
have length at least one. Now it follows from Lemma 4.3, that if gL n L is 

non-empty, then g nL n L is strictly shorter than gL N L for all n --- 2. Hence in 

the above construction l(g~L n L ) >  l(g3L n L ) > . - ' .  Hence the construction 

stops and we obtain the required element g of Try(F). 

Consider the image 7r(l) of I in the surface F~ the quotient of/7 by the infinite 

cyclic group generated by g. This surface is orientable, and this is the one point in 

the proof where we use the orientability of F. The fact that gl n I is excess 

implies that we can find a compact annulus A in F~ such that the arc 7r(l) meets 

A in an arc with excess self-intersection. This uses the analogue for arcs of 

Lemma 3.4. Now Lemmas 1.2 and 1.9 imply that this arc possesses an embedded 

1-gon or 2-gon. But an embedded 1-gon in F~ would lift to an embedded 1-gon in 

f which is impossible. Hence we have an embedded 2-gon in Fg. Lifting this to f 

yields an embedded 2-gon D between l and gl such that gD n D is empty. 

(Note that in principle D could be between l and g nl, but this is excluded as 

g ' l  N l is not excess, for n => 2.) We claim that D descends to a singular 2-gon for 

f. This is equivalent to asserting that the two arcs ,9oD and 01D of OD yield 

disjoint sub-arcs of the domain of f. A better way to say this is that for every 

non-trivial element h in Try(F), the arcs h(OoD) and 0oD never overlap, that 

h(OiD) and O~D never overlap and that h(O0D) and OlD never overlap. The 

only elements of 1rl(F) which could cause such overlaps are those of the form/3", 

(gflg-~)", g/3" and their inverses. 

Recall the projection p :ff'---~F and consider the image of D. Clearly 

p ( D ) C L  O gL = A and, in particular, A has length at least one. A s / ( A ) <  t(a) ,  

by Lemma 4.3, we know that a "a  N a and (gag-1)"a O A are empty, for all 

non-zero integers n. It follows that O0D and c~D each yield sub-arcs of the 
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doma in  of f, as/3 = a d. Now we consider  the two cases of L e m m a  4.5. In the first 

case,  ga'A O A = 0 ,  for  all integers  n, so it follows at once that  D descends  to a 

s ingular  2-gon for  f as required.  In the second case, we note  that  p ( D )  is a 

sub-arc  A of A. The  fact that  gD n D is e m p t y  implies that  I(£)_-< t(g) and we 

can apply  the result  of L e m m a  4.5(ii) to deduce  that  ga ~J( n ,~ is empty ,  for  all 

non-zero  integers  n. It  follows that  D descends  to a singular 2-gon for  f and we 

have  c o m p l e t e d  the p roof  of T h e o r e m  4.2. 
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